CPA is a project analysis and planning method that allows a project to completed in the shortest possible time

The need to plan complex projects

- Many larger businesses get involved in projects that are complex and involve significant investment and risk
- As the complexity and risk increases it becomes even more necessary to identify the relationships between the activities involved and to work out the most efficient way of completing the project

Information needed for CPA

- A list of all activities required to complete the project
- The time (duration) that each activity will take to completion
- The dependencies between the activities (e.g. activity D cannot be completed until activity B\&C done)

CPA calculates...

- The longest path of planned activities to the end of the project
- The earliest start time (EST) and latest finish (LFT) time that each activity can start and finish without making the project longer
- Which activities are "critical" (i.e. on the longest path) and which have "total float" (i.e. can be delayed without making the project longer)

Drawing the network

Component	Description
Node	A circle that represents a point in time where an activity is started or finished. The node (circle) is split into three sections:
2	The left half of the circle is the unique node (activity) number - the network diagram draws these in order The top right section shows the earliest start time (EST) that an activity can commence based on the completion of the previous activity The bottom right section shows the latest finish time (LFT) by which the previous activity must be completed
Activities	An activity is something that takes time. An activity is shown on the network as a line, linking the nodes (circles). A description of the activity, or a letter representing the activity, is usually shown above the relevant line
Duration	The length of time it takes to complete an activity - shown as a number of the relevant units (e.g. hours, days) under the activity line

Simple project example - revising for exams

Task	Activity	Dependent on	Duration (hours)
A	Gather lesson notes and read through	Starting activity	10
B	Identify gaps in knowledge	Completion of task A	3
C	Research online sources	Completion of task B	5
D	Procrastinate and browse Facebook	Completion of task B	30
E	Write revision plan \& revision notes	Completion of task B \& C	12
F	Practice past exam papers	Begin when E complete	8
G	Complete last minute cramming		15

Calculating ESTs

- The first node will always have an EST of zero!
- ESTs are calculated from left to right
- Add the duration of an activity to the EST of a previous node
- If more than one activity leads to a node, the highest figure becomes the new EST

Calculating LFTs

- Give the last node of the project an LFT = to the EST
- Work backwards from right to left
- Subtract the duration of the activity from the LFT

When there are two or more activities ending at the same node (working backwards), always take the activity with the LOWEST of the values.

Calculating the float
The float is the duration an activity can be
extended or postponed so that the project
still finishes within the minimum time
Calculated as:
LFT less Activity Duration less EST

Calculated float - Exam Project				
Activity	เr	Duration	Est	Total Foat
A	10	10	0	0
в	13	3	10	0
c	23	5	13	5
D	43	30	13	0
E	35	12	18	5
F	43	8	30	5
G	58	15	43	0
$(1 \cdot 0) \quad\left(6 \frac{10}{20}\right)$				

Identifying the critical path

- Activities with a float of 0 (zero) cannot be delayed without delaying the entire project
- Such activities represent the "critical path"
- On the critical path, activities have an equal EST and LFT

Benefits and drawbacks of CPA			
Advantages	Disadvantages		
Most importantly - helps reduce the risk and costs of complex projects	Reliability of CPA largely based on accurate estimates and assumptions made		
Encourages careful assessment of the requirements of each activity in a project	CPA does not guarantee the success of a project		
Help spot which activities have some slack ("float") and could therefore transfer some resources = better allocation of resources	Resources may not actually be as flexible as management hope when they come to address the network float		
A decision-making tool and a planning tool - all in one!	Too many activities may the network diagram too complicated. Activities might themselves have to be broken down into mini-projects		
Provides managers with a useful overview of a complex project			
Links well with other aspects of business planning, including cash flow forecasting and budgeting			

Essential points

- All diagrams start with
- Project name on top, duration below

- EST's first, left to right = previous EST + next activity duration.
- LFT's, right to left = previous LFT - duration. The first and last nodes' EST and LFT are equal.
- If more than one activity leads to a node (left or right), the EST of that node will be the highest option, the LFT will be the lowest.
- The critical path follows the nodes that have identical ESTs and LFTs.

